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Abstract. The closed-form expression for the current noise spectral densitySU for a disordered
conductor has been found starting from the general principles of Gaussian fluctuation statistics,
without makingad hocassumptions about the form of the distribution function of the relaxation
times of the defects with internal degrees of freedom. It allows one to analyse the noise
characteristics of the system consistently at arbitrary frequenciesf and temperatures. On
applying it to metals with frozen strains, we succeed in giving a quantitative interpretation
of the phenomenon. The theory: (i) demonstrates almost 1/f behaviour ofSU over a frequency
interval that expands sharply with the growth of disorder in the metal; (ii) leads to ‘saturation’
of SU at low f ; (iii) gives a convergent integrated intensity for the current noise; (iv) describes
completely the temperature dependence of the empirical Hooge factor. Our theory also predicts
a narrowing of the 1/f region (to a point where it actually disappears) with temperature increase
that is well known experimentally for semiconductors but has not received a consistent theoretical
interpretation up to now.

1. Introduction

The phenomenon known as 1/f (flicker, excess) noise has a long history, and a large number
of attempts have been made to model it (see, for example, the reviews [1–3]). Flicker
noise appears in conductors of different nature—metals, semiconductors, electrolytes—but
a consistent theory for this phenomenon has not been formulated up to now. On the empirical
level, the noise spectral densitySU , which is determined by voltage fluctuations against the
background of the mean voltage〈U〉 applied to the disordered conductor, is described by
the approximation formula [1–4]

SU

〈U〉2 =
αH

Nf
(1)

whereN is the number of charge carriers in the sample and the dimensionless quantity
αH ∼ 10−2–10−3 is the so-called Hooge factor. Questions concerning its numerical value
and probable dependence on temperature and on the characteristics of the material (as well
as on the frequencyf ) have been subjects of theoretical discussion for a long time, but
exhaustive answers to these questions remain absent from the literature.

In the present paper considering disordered metal, as an example, a consistent theory
that allows one to describe the principal peculiarities of 1/f noise is proposed. Working
within the framework of the theory, we introduce a formalism according to which the flicker
noise can be connected with random changing of electron mobility due to the fluctuation
dynamics of atomic defects in the metal. Such a concept has been invoked many times
to construct 1/f noise models (see, for example, [3, 7–10]). However, there still have
remained open some important questions concerning the consistent derivation of the 1/f
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law, the frequency range over which it is applicable, the convergence of the 1/f noise
integrated intensity etc.

We will calculate the resulting noise characteristics for a disordered metal by averaging
their local values over Gaussian fluctuations of an appropriate random variable. The
feasibility of carrying out of such averaging in the analysis of the problem of the non-
Debye relaxation of glasslike ionic conductors has been successfully demonstrated in our
recent papers [5, 6]. Below, we will obtain an expression forSU which is not only free
of any ad hoc quantities, but also is such that, from its structure alone, we will be able
to establish the physical meaning and numerical values of parameters of the type ofαH

which appear in empirical relations. As a direct application of our theory, we will give a
detailed quantitative interpretation of the experimentally observed temperature dependencies
of SU in the 1/f region for typical metals. Therefore, bearing in mind that procedures for
establishing such experimental dependencies on an empirical basis date back to the work of
Dutta and Horn [1], one can consider our approach as uncovering the basic physics in the
Gauss-like distribution function of the relaxation times of the noise-producing defects used
in [1]. The proposed theory, in principle, yields an extension to the cases of non-metallic
materials—semiconductors, ionic conductors—as well (these issues are touched on in our
discussion).

2. The fluctuation dynamics of defects and the noise spectral density

Before we turn to the mathematical formulation of the theory, wherein the electron scattering
by relaxing defects is just considered as an origin of 1/f noise, let us discuss the nature of
such defects. The polycrystalline Ag, Cu, Au etc films for which the 1/f noise phenomenon
is investigated usually contain a large number of non-equilibrium defects, for example
vacancies and interstitials [11] (though even nominally pure metal samples may contain
a certain level of impurity, for example oxygen atoms [12, 3], with typical concentrations
∼10−4 [13]). It is generally acknowledged, however, that neither their translational diffusion
nor processes of the type of intrinsic defect creation/annihilation (or electron trapping) can
explain the peculiarities of the current noise in the metals investigated (this was accorded
special attention in the review [3]). On the other hand, it is known that in, for example, fcc
Ag, the preferred shape of the intrinsic interstitial defects is a dumb-bell one [14]. Such
defects break the initial cubic symmetry, and following the terminology of [3] we shall call
them ‘symmetry breakers’ (SBs).

Possessing rotational degrees of freedom, the SBs can effect orientational transitions
between states that are degenerate in energy, which will be manifested as a thermally
activated rotational diffusion of the interstitial (the case of an impurity SB was considered
in [9]; see also [2, 3]). During the scattering by SBs that are reorienting via fluctuations, the
electrons of a metal will undergo random mobility changes that will just lead to a current
noise spectrum.

We shall carry out the mathematical derivation of the explicit expression for the 1/f

noise spectral density on the basis of the general expression

SU

〈U〉2 =
4

〈U〉2
∫ ∞

0
dt cos(ωt)〈δU(t) δU(0)〉. (2)

The temporal correlation function under the integral is to be calculated by averaging (denoted
by the angle brackets) of the bilinear combination of the voltage fluctuations over the
probabilities of realization of certain random characteristics of the disordered metal. Taking
into account the fact that the real metal samples used in 1/f noise experiments are usually
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polycrystalline, a relevant characteristic, of central importance, is apparent, namely the
static field of random strains frozen in a polycrystalline sample during the process of its
preparation. Also, in equation (2) an averaging over a chaotic distribution of frozen SBs is
also assumed to be trivial and to remain appropriate to the absence of such random fields.

In our derivation, we restrict consideration to the case that is the most widespread
from the experimental point of view, in which the voltage fluctuations are measured at the
same contacts that serve to provide the background current supply to the metal sample.
To be specific, let us take the sample in the shape of a parallelepiped whosex-axis lies
in the direction of the average (background) current〈I 〉 = 〈U〉S/(Lx〈ρxx〉), whereLx is
the sample length,S is the sample cross-sectional area, and〈ρxx〉 is the average value of
the xx-component of the resistivity tensorρij of the metal. The voltage fluctuations in
equation (2) are also proportional to〈I 〉, and can be represented as an integral along the
sample length over the local fluctuations of the corresponding component of the resistivity
tensor. Taking into account the fact that the angle brackets in equation (2) assume averaging
over the sample cross-section as well, we arrive at the following expression:

SU

〈U〉2 =
4

〈ρxx〉2V 2

∫ ∞
0

dt cos(ωt)
∫

dr
∫

dr′ 〈δρxx(r, t) δρxx(r′, 0)〉 (3)

whereV = SLx is the system volume (the leading role of just resistance fluctuations in the
origin of the 1/f noise has been pointed out, for example, in [15]). Before we proceed to the
concrete calculation of the correlation in the presence of the above-mentioned static random
strains appearing in equation (3), note that if one does not take into account the effects of
the latter on SBs, then this calculation becomes trivial, because, reducing to the problem
of solving a relaxation equation for orientation transitions, it will have as a solution the
ordinary decay exponent with a single relaxation time. Thus the spatial correlation reduces
to a δ-function andSU reduces to the ordinary Lorentz frequency spectrum.

Another approach to the calculation ofSU is via the specification of the resistivity
fluctuation mechanism. Note, first of all, that for temperaturesT > 100 K (this temperature
region is usually the most significant for analysis of the data on 1/f noise measurement
for Ag, Cu etc films [1–3, 15]) the contribution of the processes of electron scattering
by phonons (the phonon component,ρ(ph)

xx ) and by SBs (the so-called residual component,
ρ(SB)
xx ) to ρxx exceeds the contribution of the electron–electron scattering, and so we shall

from now on neglect the latter.
As is well known (see, for example, [16]),ρ(ph)

xx has different power dependencies onT
in the regions above and below the Debye temperature2 (for silver,2 = 210 K [17]). An
expression which correctly reproduces the known [16] asymptotic dependencies forT � 2

andT � 2 for the fcc metals discussed here can be written in the form

ρ(ph)
xx =

m∗T
h̄e2ne

[
1+

(
2

T

)4
]−1

(4)

wherem∗ is the conduction electron effective mass,e is its charge, andne is the electron
number density. We will use equation (4) to interpolate to the whole temperature range
(∼100–600 K) over which experiments on 1/f noise are usually carried out.

The residual component is, in principle, formed by electron scattering by all possible
types of defect, both intrinsic and extrinsic. Taking into account, for simplicity, just the
electron scattering by the SBs discussed here, for the residual component of the local
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resistivity tensor at the timet one may use the expression

ρ
(SB)
ij (r, t) = pF

e2ne

[
σnD(r)δij + 3σ ′

g∑
α=1

l
(α)
i l

(α)
j n

(α)
D (r, t)

]
. (5)

HerepF is the Fermi momentum of the metal,n(α)D (r, t) is an instantaneous local value of
the number density of the SBs with theα-orientation, and the superscriptα enumerates the
g possible energetically equivalent orientational (as given by the unit vectorsl(α)) states of
SBs. In the specific case of SBs in the form of dumb-bell-like intrinsic interstitials, the most
stable configurations areg = 3 orientations along the principal axes of the fcc lattice [14].

We will consider the total local densitynD(r) of randomly placed SBs to be independent
of time and determined only by the sample preparation conditions, so that the following
conservation law is fulfilled:

g∑
α=1

n
(α)
D (r, t) = nD(r). (6)

The fact that equation (5) contains, in addition to the transport cross-sectionσ > 0, also the
quantityσ ′ > −σ/3 (this inequality is obtained from the condition of essential positiveness
of the quadratic form which determines the energy dissipation during conduction) is a
reflection of the anisotropy of the electron scattering by SBs. On carrying out an averaging
in equation (5) over the orientations of the vectorsl(α) and over spatial coordinates, we
obtain for the term〈ρ(SB)

xx 〉 in equation (3) the following expression:

〈ρ(SB)
xx 〉 =

pF

e2ne
(σ + σ ′)nD (7)

wherenD = 〈nD(r)〉 is the averaged SB density. Note that in the case whereσ ′ = 0 we
recover the usual expression for the residual resistivity caused by electron scattering by
isotropic point defects (see, for example, [16]).

The local time-dependent componentρxx(r, t) of the resulting resistivity is obtained by
summation of the localxx-components of the residual and phonon contributions. Before we
compare the fluctuation components of these contributions, note that when low-frequency
noise in metals is considered, one can certainly neglect the influence of the density
fluctuations of the electron (‘light’) subsystem onρxx(r, t). This is because the quantityne

relaxes quickly, in the Maxwell time∼ρ/(4π) ∼ 10−19 s, for the resistivityρ ∼ 10−6 � cm
[12] which is typical for metals.

In other words, from the expressionρ = 1/(nee
2b), which contains the electron mobility

b (see, for example, [16]), it follows that just the fluctuations ofb—which in their turn
are connected to the slow reorientations of ‘heavy’ SBs—will determine the current noise
in metals (this fact has been mentioned many times in the literature; see, for example,
the review [3]). In such reorientations, the local Debye temperature determined by the
metal’s local shear modulusµ(r, t) [18] in the presence of SBs should, in principle, also be
considered as a local dynamic quantity, relaxing together with the fluctuations ofn

(α)
D (r, t).

We will now show that, due to such fluctuations of the shear modulus, the mean square
fluctuation1ρ(ph) of the phonon contribution to the metal resistivity is numerically small in
comparison with the mean square fluctuation1ρ(SB) of the residual component. To do this,
let us first determine, with the help of equation (5), the local fluctuations of the residual
resistivity:

δρ(SB)
xx (r, t) = 3pF

e2ne
σ ′

g∑
α=1

[
l(α)x
]2
δn

(α)
D (r, t) (8)
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where we take into account the equality

g∑
α=1

δn
(α)
D (r, t) = 0 (9)

which stems from the conservation law (6) for fluctuations

δn
(α)
D (r, t) = n(α)D (r, t)− nD(r)/g

because SBs are assumed to perform only reorientation movements. On the other hand,
the fluctuation component of the phonon contribution determined from equation (4) will,
according to the above, have the same fluctuation multiplier as appears in the rhs of
equation (8). Then, taking into account the dimensional structure of equation (4), we
obtain the simplest estimate for the ratio of the above-mentioned mean square fluctuations:∣∣1ρ(ph)

∣∣∣∣1ρ(SB)
∣∣ ≈ 4(2/T )4m∗T[

1+ (2/T )4]2
h̄σ̄pF

∣∣∣∣∂ lnµ

∂nD

∣∣∣∣ (10)

where the derivative characterizes the relative change of the shear modulus with the defect
number density, and̄σ is the averaged cross-section of electron scattering by SBs. The
value of the derivative appearing in equation (10) in the case of small concentration
cD = nD/na ∼ 10−4 in which we are interested can be extracted from the experimental
data (see, for example, [13]). Indeed, in the linear approximation forcD, the shear modulus
µ of a metal with defects can be written in the formµ = µ0 + µ′cD whereµ0 is the
shear modulus of a perfect metal, and the constantµ′ for, for example, a metal with
vacancies isµ′ ≈ −µ0 [13]. Then, putting in equation (10) the typical values2 ≈ 200 K,
m∗ ≈ 10−27 g, σ̄ ∼ σ ≈ 6× 10−16 cm2, andpF ≈ 10−19 g cm s−1, and taking as an
estimate|∂ lnµ/∂nD| ≈ 1/na, wherena ≈ 6×1022 cm−3 is the metal-atom number density,
we get

∣∣1ρ(ph)/1ρ(SB)
∣∣ ∼ 10−2–10−3 for the whole temperature range of interest to us

(∼100–600 K).
In order to find the residual resistivity correlation function which appears in equation (3),

we need equations which describe the temporal evolution of the local populations of SB
orientation states. As the local kinetic equation for population fluctuations, we shall use the
following:

∂ δn
(α)
D (r, t)

∂t
= −g − 1

τ
δn

(α)
D (r, t)+

1

τ

g∑
β 6=α

δn
(β)

D (r, t). (11)

Introducing the relaxation timeτr = τ/g and taking into account equation (6), we get
from equation (11) the simple relaxation equation

∂ δn
(α)
D (r, t)

∂t
= − 1

τr
δn

(α)
D (r, t). (12)

Its solution has the form

δn
(α)
D (r, t) = δn(α)D (r) e−t/τr (13)

where, for simplicity, the zero-time argument in the amplitude is omitted. The temporal
correlation function of interest to us is obtained by averaging the product of equation (13)
andδn(α)D (r′):

〈δn(α)D (r, t) δn(α)D (r′)〉 = 〈 δn(α)D (r) δn(α)D (r′) e−t/τr〉. (14)
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During the calculation of this average, consider first that it is usually accepted [17] that
the fluctuations appearing in equation (14) can be taken asδ-correlated in space; then, for
arbitraryα, we find

〈δn(α)D (r) δn(α)D (r′)〉P = na
cD

g

(
1− 1

g

)
δ(r − r′) (15)

where the normalizing factor carries the information about the average concentration
cD = nD/na of defects and their degeneracyg, and by labelling the angle brackets with the
subscript ‘P’, we are drawing attention to the Poisson character of this averaging.

As a result, the average in equation (14) which will finally determine the spectral
density of the current noise in equation (3) can be presented as the product of equation (15)
and 〈e−t/τr〉fr , where the subscript ‘fr’ just indicates that the averaging is over the above-
mentioned frozen random strains, the information on which is contained inτr and which
are of central importance for the 1/f noise phenomenon. To calculate the coefficient of the
Fourier transform of〈e−t/τr〉fr let us examine the concrete example of the situation with the
SB structure considered for the above-mentioned case of intrinsic interstitials in the form of
dumb-bell configurations orientated in the direction [100] of the fcc lattice withg = 3. Also,
taking into account the polycrystalline nature of the samples used in noise experiments (see
above), we should average the combinations appearing in the substitution of equation (8)
into equation (3) over the crystallite random orientations as well, i.e. over all possible
orientations of the orthogonal framel(1), l(2), l(3). Carrying out the latter averaging, and
calculating, with the help of equations (9) and (15), the cross-correlation (β 6= α) functions

〈δn(α)D (r) δn
(β)
D (r′)〉P = −1

2
〈δn(α)D (r) δn(α)D (r′)〉P (16)

we get

〈δρ(SB)
xx (r, t) δρ(SB)

xx (r′)〉 = 18

5

(
pF

e2ne

)2

σ ′2〈 δn(α)D (r, t) δn(α)D (r′)〉. (17)

Substituting equation (17) into equation (3), taking into account equations (14) and (15) and
the fact that〈e−t/τr〉fr , naturally, does not depend on the spatial coordinates, and expressing
〈ρxx〉 = 〈ρ(ph)

xx 〉 + 〈ρ(SB)
xx 〉 through equations (4) and (7) forg = 3, we arrive at the formula

SU

〈U〉2N = A(cD, T )

∫ ∞
0

dt cos(ωt)〈e−t/τr〉fr . (18)

HereN = naV is the total number of primary cells in the sample (in the case considered,
that of a simple metal,N coincides with the number of conduction electrons in the sample),
and we have introduced the notation

A(cD, T ) = 16

5

(
σ ′

σ

)2

cD

[
cD

(
1+ σ

′

σ

)
+ T

T0

1

(2/T )4+ 1

]−2

with T0 = h̄napFσ/m
∗. Putting in the values for silver,na = 5.8 × 1022 cm−3 and

pF = 1.2 × 10−19 g cm s−1, and takingσ = 6 × 10−16 cm2, we get an estimate of
the range of possible values ofT0 of approximately 35 000–25 000 K for the effective mass
m∗ in the range 1–1.5 free-electron masses.

3. Calculation of the fluctuation averages and comparison with experiment

With the help of the expression (18) derived above, one can analyse the current noise in
disordered metals, if one calculates the average in equation (18). This average should be
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calculated taking into account the fact that the local relaxation time is generally accepted
[1–3] to have has the activation form

τr = τ0e(E0+δE)/T . (19)

The local activation energy—the height of the barrier which separates the energetically
equivalent states of the SBs—appearing here contains, first of all, the ‘initial’ quantityE0.
For polycrystalline metals this quantity, generally speaking, does not coincide with that
for an isolated SB in a perfect lattice, and contains a part connected with the existence
of uniform deformations which determine the so-called ‘mean lattice’ (regarding the latter,
see, for example, [19]). The random componentδE, then, in the case of a metal, where
the Coulomb fields are strongly screened, is caused, in fact, by non-uniform strain fields
frozen in the polycrystal at the preparation temperatureTp (naturally, fluctuations of the
pre-exponential factorτ0 can be neglected compared to fluctuations of the exponent).
These fields are produced both by extended defects—dislocations, grain boundaries—and,
in principle, by point ones. The concentration of the latter, however, is rather low in typical
samples (cD ∼ 10−4 [12]), so one can neglect direct interaction of noise-producing SBs,
and consider that each of them is effectively in a frozen field of random strains. Note
that the idea that the magnitude of the frozen fluctuations is determined by the preparation
temperature for the metal sample was stated in an explicit form by Egami and Srolovitz
[20] (see also [21]).

Let us now show that if Gaussian disorder frozen atTp is present in the system, then,
independently of the specific nature of the mechanism of the influence of the disorder on
the kinetic characteristics of the conducting electrons, the temperature dependence of the
resulting fluctuation term, additional toE0, can be calculated in a general form. Indeed,
denoting the random variable as� (below, during the concrete example calculation, we
shall consider the fluctuation part of the local relative variation of the volume due to
random—non-uniform—deformations of the lattice with respect to the ‘mean lattice’ as
�), and representing the fluctuation in the formδE = (∂E0/∂�)ml�, where the subscript
‘ml’ indicates that the derivative is taken for the ‘mean-lattice’ state [19], we have for the
average〈
eδE/T

〉 = ∫ D� exp[(∂E0/∂�)ml�/T ] exp[−FG{�}/Tp]

/∫
D� exp[−FG{�}/Tp] .

(20)

The normalized functional integral appearing in equation (20) is easily calculated with
the Gaussian distribution function taken atTp and expressed via the functional of the free
energy of the fluctuationsFG{�} which is quadratic in� (concrete examples of such
calculations are given in [5, 6]; see also [17]). Taking into account the fact that� is
a random function of the coordinatesr, introducing the Fourier representation of�, and
calculating the Gaussian integrals that appear, we obtain

〈τr〉 = τr0 exp

(
T 2
∗
T 2

)
τr0 = τ0 exp

(
E0

T

)
. (21)

The characteristic temperature introduced here

T∗ = 1

2

∣∣∣∣(∂E0

∂�

)
ml

∣∣∣∣
√
Tp

(2π)3/2

[∫
dk A−1(k)

]1/2

(22)

contains the integral of the reciprocal values of the Fourier coefficientsA−1(k) > 0 of the
Gaussian functionalFG{�}. We emphasize once again that the appearance of the additional
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term∼T −2 in the exponent of〈τr〉 is a general result, and results simply from the Gaussian
form of the frozen fluctuations of the random quantity�, independently of its specific
nature.

One can obtain a good estimate ofT∗ for real polycrystalline metal without using the
general equation (22), i.e. avoiding the stage of direct calculation ofA(k). To do this,
let us neglect, as was discussed above, the direct mutual influence of the SBs, and accord
to the quantity� the meaning of the fluctuation part of the random relative variation of
the primary cell volume containing the chosen SB. Taking, like in [21, 20], the primary
cell volumeva as a fluctuation volume, and writing down the elastic fluctuation energy as
Kva�

2/2 (see, for example, [19]), whereK is the elasticity effective modulus of the metal,
by direct calculation of the integrals in equation (20) we arrive at equation (21), with

T∗ =
∣∣∣∣(∂E0

∂�

)
ml

∣∣∣∣
√

Tp

2Kva
. (23)

Substituting in, here, the characteristic parameters for silver from [22]:Tp ≈ 1200 K (the
solidification temperature) andK ≈ 5× 1010 N m−2, and takingva ≈ 20 Å3, and also
assuming that|(∂E0/∂�)ml| ∼ E0 ≈ 1 eV [1, 2], we obtain the estimateT∗ ≈ 1100 K.

We return to equation (18), and use the representation

SU

〈U〉2N = A(cD, T )Re
∫ ∞

0
dt eiωt

∞∑
m=0

(−1)m

m!
tm〈τ−mr 〉fr . (24)

We note that the calculation of〈τ−mr 〉fr , in analogy with equation (21), leads to the following
result [5, 6]:

〈τ−mr 〉fr = τ−mr0 exp

(
m2T

2
∗
T 2

)
. (25)

Consequently, the summation of the series in equation (24) can be carried out exactly and
we get [5, 6] 〈

exp

(
− t
τr

)〉
fr

= 1√
π

∫ ∞
−∞

du exp

[
−u2− t

τr0
exp

(
2
T∗
T
u

)]
. (26)

Now substituting equation (26) into equation (18) and integrating overt , we finally find

SU

〈U〉2N = A(cD, T )Re〈Z(ω)〉fr

〈Z(ω)〉fr = τr0√
π

∫ ∞
−∞

du
exp(−u2)

−iωτr0+ exp(2T∗u/T )

(27)

where 〈Z(ω)〉fr (compare with [5, 6]) plays the role of a generalized impedance of the
disordered metal, and is the Fourier transform of the relaxation function of the electrons
with respect to their scattering by the SBs.

Expression (27) is the central result of this paper, and we shall show thatSU is ∼1/ω
over a frequency range that sharply expands with the growth of the degree of disorder
of the conductor. The quantity 2T∗/T is a measure of the disorder, and we consider the
behaviour of〈Z(ω)〉fr in the limit where 2T∗/T � 1 which, taking into account the estimate
given above forT∗, reflects a typical experimental situation (for example, according to [1],
T < 650 K). Then Re〈Z(ω)〉fr can be calculated by the saddle-point method. The saddle
point us of the corresponding integral is determined by the equation

us = T

2T∗

[
ln(2πτr0f )− 1

2
ln

(
1+ usT/T∗
1− usT/T∗

)]
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where the frequencyf = ω/(2π) has been introduced. For the limit where 2T∗/T � 1
of interest to us, for which the resulting quantityusT/T∗ � 1, the calculation of the
saddle-point integral according to a common routine leads to the formula

SUN

〈U〉2 =
A(cD, T )T

4
√

2πT∗f
exp

{
− T

2

4T 2∗

[
ln(2πτ0f )+ E0

T

]2
}
. (28)

The formula obtained, equation (28) exhibits nearly 1/f behaviour over the frequency
interval

f−(T )� f � f+(T ) (29a)

where

f±(T ) = 1

2πτ0
exp

(
−E0

T
± 2T 2

∗
T 2

)
. (29b)

As regards the estimate forf+(T ), one should note the following remark. This estimate
is, by no means, correct for temperatures above a certain level, for which the values of
f+(T ) given by equation (29) do not exceed the natural boundary frequency∼τ−1

0 which is
determined by the limit frequency of the atomic vibrations of the solid. Formally, expression
(29) leads to a violation of this natural restriction at low temperatures, since in the derivation
of equation (27) we did not put any limits on the relaxation times of the fluctuations.
The point is that this restriction plays almost no role in the analysis of the low-frequency
fluctuation dynamics of disordered conductors considered here; that is, it does not have any
effect on the form of equation (28) or on that off−(T ). The correction to the estimate for
f+(T ) given as (29) can be realized on the qualitative level by changing the lower limit of
the integral in equation (27) by−E0/(2T∗) (compare with the analogous model forms in
[21, 22]), to ensure that at low temperatures the natural conditionf+(T ) ∼ τ−1

0 is obeyed.
Estimation of the lower boundary in inequality (29) forT = 300 K for the case of a metal

with the typical parameter valuesτ0 = 10−14 s,E0 = 1 eV [1, 2], andT∗ = 1300 K, leads
to a practically unmeasurable value,f−(300K) = 1.3×10−20 Hz; for T = 500 K, we obtain
f−(500 K) = 1.8× 10−3 Hz. For the upper boundary, we getf+(300 K) = 5.2× 1012 Hz
and f+(500 K) = 109 Hz. For the rangef � f−(T ), as is seen from equation (27),
SUN/〈U〉2 goes to the ‘saturation’ value

A(cD, T )τ0 exp(E0/T + T 2
∗ /T

2).

As for the regionf � f+(T ) at ‘high’ temperatures, for whichf+(T ) is determined by the
expression (29), the regime where

SUN/〈U〉2 = A(cD, T )(4π
3/2)−1τ−1

0 [exp(−E0/T + 2T 2
∗ /T

2)]f −2

materializes; but at ‘low’ temperatures, for which, according to the above,f+(T ) ∼ τ−1
0 ,

for the noise spectral density in the high-frequency limit we find

SUN/〈U〉2 ∼ A(cD, T )τ
−1
0 f −2.

It is useful to note that the tendency of the spectral density towards ‘saturation’ in the
low-frequency limit predicted by our theory produces convergence of the noise integrated
intensity, so the ‘paradox’ of the divergence of the mean square of the fluctuations of a
quantity responsible for the 1/f noise frequently discussed in the literature (see, for example,
the review [2]) does not arise at all.

Thus, equation (27) (as well as its approximation variant (28)), being derived on general
grounds, demonstrates the consistency of the derivation of the law for the current noise.
Moreover, by comparison of equation (28) with expression (1), one can establish the
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complete temperature and frequency dependences of the factorαH, now also containing
the information about the material characteristics (τ0, E0, and quantities appearing inT∗,
A(cD, T )) of the disordered conductor. It is interesting to note that, in a certain sense, the
quantityαH can be considered as nearly constant under the conditionT � E0/|ln(2πτ0f )|,
for which the main (exponential) temperature dependence almost disappears. Choosing for
τ0, E0, andT∗ the values given above, and using as an estimatecD = 10−4, we find, for
example, forf = 20 Hz andT = 250 K, the valueαH ≈ 5× 10−3, which is close to the
commonly accepted value of the factorαH in the empirical formula of Hooge [1–4].

It is useful to analyse to what extent our formula (28) satisfies the relation

−∂ ln SU
∂ ln f

= 1− 1

ln(2πτ0f )

(
∂ ln SU
∂ ln T

− 1

)
obtained by Dutta and Horn [1] under somewhat restrictive conditions. At sufficiently low
temperatures one can neglect the temperature-dependent term in ourA(cD, T ) (with the
parameters given above, such neglect is permissible forT < 90 K). In this case, as one
can verify, the relation of Dutta and Horn is obeyed exactly. But for high temperatures,
when just including the second term inA(cD, T ) is crucial, the Dutta and Horn relation is
violated. The cases of violation of this relation have been noted earlier (see the discussion
of such circumstances in, for example, [3]).

Figure 1. The experimental temperature dependence ofSUN/〈U〉2, for Ag for f = 20 Hz
(symbols, [1]), and the result given by our theory (solid line); the dashed line corresponds to
the theory based on the consideration of a single type of relaxing defect. (For the parameters,
see the text.)

The formulae (27) and (28) derived by us can be considered as the theoretical
justification fitting the expressions used in [1] for use in numerical processing of the
experimental data on 1/f noise. In figure 1 the experimental (triangles and squares [1])
temperature dependencies ofSUN/〈U〉2 at f = 20 Hz for Ag films on different substrates
are shown, together with our theoretical fitting according to equation (28) (the dashed line).
The fitting procedure, being realized via processing of the experimental data from [1] up
to 500 K with the help of the program Origin40, with the fixed values of the parameters
T0 = 25 000 K, cD = 10−4, and τ0 = 1 × 10−14 s, led to the following values of the
adjustable parameters:E0 = 1.005± 0.007 eV,T∗ = 1334± 16 K, σ ′/σ = 1.892± 0.005.
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From the results obtained, it is seen that our theory allows extraction, with sufficiently high
accuracy, from the experimental data the numerical values of such basic parameters of the
noise-producing material asE0, T∗, andσ ′/σ . Note that the value ofE0 obtained from the
experiment, as well as the chosen valuescD andτ0, are close to those commonly accepted
for condensed media [1–3].

The observed upturn in the noise magnitude seen in figure 1 forT > 500 K could be
explained by the existence of SBs of at least one more kind in the film (such a possibility
was discussed as far back as in [1]). The contribution of SBs of the second kind toSU is
described by just the same formula, equation (28), but, generally speaking, with other values
of the activation energy and characteristic temperature. If one accepts the additivity of the
contributions, and retains the values of the remaining parameters, then, having taken for the
SBs of the second kind the parameters (marked by primes)E′0 = 1.44 eV andT ′∗ = 890 K,
we get the solid line displayed in figure 1. Thus our calculation can be made to agree well
with the experimental data on current noise in metals.

4. Discussion

In this paper we concentrated our attention on the case of flicker noise in metals. However,
as far back as in Hooge’s papers (see, for example, [23]) the problem of 1/f noise in
liquid electrolytes was discussed, and, relatively recently, there have appeared papers (see,
for example, [24]) in which the measurement of current noise in solid ionic conductors
was reported. Our theory can be modified to provide a description of the current noise in
disordered ionic conductors and semiconductors as well.

In particular, in liquid electrolytes where such notions as SBs and the electron conduction
zone lose their meaning, one should expect the 1/f noise to be determined by the relaxation
of ionic component fluctuations. With account taken of the Coulomb nature of such
fluctuations, their dynamics, in application to the problem of 1/f noise, can be described
on the basis of ideas developed in our papers [5, 6] (we separately emphasize the case of
ergodic disorder considered in [6]). The corresponding results, which allow us to explain
the anomalously large (∼10) values of the Hooge factor for electrolytes [23], will be given
elsewhere later.

The case of semiconductors, in particular, is of special interest, because for them our
theoretical conclusion that the noise spectral density ‘saturates’ asf → 0 finds clear
experimental confirmation, and has long been discussed on an empirical level (see, for
example, [25, 1]) without making connection with basic physics (let us mention, though,
the Monte Carlo simulation of the 1/f noise in doped semiconductors in [26]). Another
major conclusion of our theory is that the 1/f region narrows as the temperature increases
when f+(T ) → f−(T ) in a conductor with frozen disorder. However, for typical metals
with T∗ ∼ 1000 K (see above), this narrowing would be noticeable only at high temperatures.
Meanwhile, for semiconductors the effect of the narrowing of the 1/f noise region to a
point where it disappears is well known experimentally (see, for example, [27]), but has
not so far received a consistent theoretical interpretation.

Note that for semiconductors and ionic conductors the connection between their noise
properties and the non-Debye character of the electric relaxation can be observed the most
unambiguously; we dedicated our papers [5, 6] to the theory of this connection. Let us
emphasize that the attempts undertaken earlier to link these two fundamental phenomena
were, according to [3], ‘untenable’ (we hope to present a consistent theoretical discussion
of this link later on).

Finally, of special interest is the 1/f noise in whiskers (see, for example, [28, 29]),
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for which its intensity can exceed by one to two orders of magnitude the noise intensity
in deposited metal films of the same volume (see also [3] and the references therein). It
seems that the ‘bulk’ theory developed in the present paper cannot be applied directly to
the quantitative interpretation of experiments on whiskers (the first to be considered were
bismuth ones [29]) for which, one may assume, the surface effects make a substantial
contribution to the 1/f noise [3]. That is, for semimetals of the bismuth type, it may
be connected with the existence of a sufficiently large adjacent surface layer of space
charge (this is because of the much lower—by approximately four orders of magnitude—
concentration of free carriers in bismuth than in normal metals [2]) which may be the main
source of 1/f noise in such systems of lowered dimensionality. It is useful to note that
in semiconductors, for which the carrier concentration is as a rule relatively small, the
significant role of the surface contribution to the 1/f noise is well known (see, for example,
[2]). At the same time, in [3] certain doubts were expressed concerning the reality of
anomalously large noise intensities in whiskers of normal metals.

5. Summary

In the present paper we have proposed a fluctuation theory of current noise in disordered
conductors. Being based on general principles of Gaussian fluctuation statistics, the theory
is free of thead hocassumptions usually made—for example, that one can choose a form
for the energy distribution function of the relaxation times of the noise-producing defects in
accordance with the experimental data. As a result, we succeeded in finding a closed-form
expression for the noise spectral density that allows us to analyse the noise characteristics of
a material consistently, for arbitrary frequencies and temperatures. In particular, the theory
allows us:

(i) to demonstrate the almost 1/f behaviour ofSU over a frequency interval whose
limits are explicitly expressed in terms of the degree of disorder of the material and which
sharply expands with the growth of the degree of disorder;

(ii) to achieve a convergent integrated intensity of the current noise;
(iii) to describe completely the temperature dependence ofSU for any given frequency,

and thus to confer a clear quantitative meaning of the empirical Hooge factor;
(iv) to point out the limit value ofSU asf → 0 (and the behaviour ofSU asf →∞);
(v) to give the temperature dependence of the frequency at whichSU reaches ‘saturation’,

and to establish that the 1/f region narrows as the temperature increases.

In an application of our theory to disordered metals with frozen random strains, we
succeeded in quantitatively manipulating experimental data on 1/f noise using values of
parameters which were not at variance with estimates commonly accepted in condensed
matter and which, in principle, constitute independent measurements.
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